Search results for "actinorhodin production"

showing 9 items of 9 documents

Plasma modified PLA electrospun membranes for actinorhodin production intensification in Streptomyces coelicolor immobilized-cell cultivations

2017

Most of industrially relevant bioproducts are produced by submerged cultivations of actinomycetes. The immobilization of these Gram-positive filamentous bacteria on suitable porous supports may prevent mycelial cell-cell aggregation and pellet formation which usually negatively affect actinomycete submerged cultivations, thus, resulting in an improved biosynthetic capability. In this work, electrospun polylactic acid (PLA) membranes, subjected or not to O2-plasma treatment (PLA-plasma), were used as support for immobilized-cell submerged cultivations of Streptomyces coelicolor M145. This strain produces different bioactive compounds, including the blue-pigmented actinorhodin (ACT) and red-p…

0301 basic medicinePolyestersSegmented filamentous bacteriaS. coelicolor immobilizationAnthraquinonesStreptomyces coelicolor02 engineering and technologySecondary metaboliteSettore BIO/19 - Microbiologia GeneraleActinorhodinMicrobiology03 medical and health scienceschemistry.chemical_compoundColloid and Surface Chemistrystomatognathic systemPolylactic acidmedicinePlasma treatmentPhysical and Theoretical ChemistryIncubationMyceliumbiologyElectrospinningPhotoelectron SpectroscopyProdigiosinStreptomyces coelicolorActinorhodin productiontechnology industry and agricultureSettore ING-IND/34 - Bioingegneria IndustrialePLA membraneSurfaces and InterfacesGeneral Medicine021001 nanoscience & nanotechnologybiology.organism_classificationAnti-Bacterial Agents030104 developmental biologyMembraneSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryBiochemistryMicroscopy Electron Scanning0210 nano-technologyBiotechnologymedicine.drug
researchProduct

The SCO1731 methyltransferase modulates actinorhodin production and morphological differentiation of Streptomyces coelicolor A3(2)

2018

AbstractStreptomyces coelicolor is a Gram-positive microorganism often used as a model of physiological and morphological differentiation in streptomycetes, prolific producers of secondary metabolites with important biological activities. In the present study, we analysed Streptomyces coelicolor growth and differentiation in the presence of the hypo-methylating agent 5′-aza-2′-deoxycytidine (5-aza-dC) in order to investigate whether cytosine methylation has a role in differentiation. We found that cytosine demethylation caused a delay in spore germination, aerial mycelium development, sporulation, as well as a massive impairment of actinorhodin production. Thus, we searched for putative DNA…

0301 basic medicineScienceMutantAnthraquinonesStreptomyces coelicolorDecitabineSettore BIO/19 - Microbiologia GeneraleDNA methyltransferaseArticleActinorhodin03 medical and health scienceschemistry.chemical_compoundBacterial ProteinsSpore germinationSpores BacterialRegulation of gene expressionMultidisciplinaryMyceliumbiologyStreptomyces coelicolorfungiQRActinorhodin ProductionCell DifferentiationGene Expression Regulation BacterialMethyltransferasesbiology.organism_classificationTn5 Mutant Strains030104 developmental biologychemistryBiochemistryHypomethylating AgentsStreptomyces coelicolor bacterial differentiation epigenetic cytosine methylationDNA methylationMedicineCytosineCytosine Methylation
researchProduct

Effect of PCL/PEG-Based Membranes on Actinorhodin Production in Streptomyces coelicolor Cultivations

2015

The actinomycetes, Gram-positive filamentous bacteria, are the most prolific source of natural occurring antibiotics. At an industrial level, antibiotics from actinomycete strains are produced by means of submerged fermentations, where one of the major factors negatively affecting bioproductivity is the pellet-shaped biomass growth. The immobilization of microorganisms on properly chosen supports prevents cell-cell aggregation resulting in improving the biosynthetic capability. Thus, novel porous biopolymer-based devices are developed by combining melt mixing and particulate leaching. In particular, polycaprolactone (PCL), polyethylene glycol (PEG), and sodium chloride (NaCl) with different…

Materials Chemistry2506 Metals and AlloysPCL/PEG membranePolymers and PlasticsPolyestersParticulate leachingS. coelicolor immobilizationAnthraquinonesStreptomyces coelicolorBioengineering02 engineering and technologyPolyethylene glycolengineering.material010402 general chemistry01 natural sciencesActinorhodinPolyethylene GlycolsBiomaterialschemistry.chemical_compoundMelt mixingPEG ratioBotanyMaterials ChemistryCell AggregationPolymers and PlasticbiologyChemistryStreptomyces coelicolorActinorhodin productiontechnology industry and agriculture021001 nanoscience & nanotechnologybiology.organism_classificationBiomaterialCell aggregationAnti-Bacterial Agents0104 chemical sciencesBlue coloredMembraneChemical engineeringFermentationengineeringBiopolymer0210 nano-technologyBiotechnology
researchProduct

The Streptomyces coelicolor Small ORF trpM Stimulates Growth and Morphological Development and Exerts Opposite Effects on Actinorhodin and Calcium-De…

2020

In actinomycetes, antibiotic production is often associated with a morpho-physiological differentiation program that is regulated by complex molecular and metabolic networks. Many aspects of these regulatory circuits have been already elucidated and many others still deserve further investigations. In this regard, the possible role of many small open reading frames (smORFs) in actinomycete morpho-physiological differentiation is still elusive. In Streptomyces coelicolor, inactivation of the smORF trpM (SCO2038) – whose product modulates L-tryptophan biosynthesis – impairs production of antibiotics and morphological differentiation. Indeed, it was demonstrated that TrpM is able to interact w…

Microbiology (medical)Primary and secondary metabolismlcsh:QR1-502cytosol aminopeptidaseStreptomyces coelicoloractinorhodin productionSettore BIO/19 - Microbiologia GeneraletrpM.MicrobiologyAminopeptidaselcsh:MicrobiologyActinorhodin03 medical and health scienceschemistry.chemical_compoundBiosynthesisTRPMSmall open reading frameProtein biosynthesis030304 developmental biologychemistry.chemical_classificationsmall open reading frame0303 health sciencescalcium-dependent antibioticCalcium-dependent antibioticbiologysmall open reading frame trpM actinorhodin production Streptomyces coelicolor cytosol aminopeptidase calcium-dependent antibiotic primary and secondary metabolism030306 microbiologyActinorhodin productionStreptomyces coelicolorprimary and secondary metabolismtrpMbiology.organism_classificationAmino acidMetabolic pathwaychemistryBiochemistryCytosol aminopeptidaseFrontiers in Microbiology
researchProduct

Effect of Streptomyces coelicolor M145 cell immobilization on actinorhodin production

2016

Non previsto

PCL- PLA-oxygen plasma.S. coelicolor immobilizationactinorhodin productionpolycaprolactone/polyethylene glycol membrane
researchProduct

Actinorhodin production intensification by nanofibrous membranes in Streptomyces coelicolor cultures

2016

In this work, electrospun polycaprolactone (PCL) and polylactic acid (PLA) membranes, subjected or not to O2-plasma treatment, werwe used as support for cell-immobilization in S. coelicolor immobilized-cells created a compact biofilm on both kinds of membranes.

Settore ING-IND/22 - Scienza E Tecnologia Dei Materialiimmobilization of Streptomyces coelicoloractinorhodin productionpolycaprolactone and polylactic acid membranesSettore BIO/19 - Microbiologia Generale
researchProduct

IMPROVED PRODUCTION OF THE ANTIBIOTIC ACTINORHODIN IN STREPTOMYCES COELICOLOR IMMOBILIZED-MYCELIAL CELL CULTIVATIONS

2017

Objectives i) Evaluation of ACT production in Streptomyces coelicolor M145 mycelial cells immobilized on polycaprolactone (PCL) and polylactic acid (PLA) nanofiber membranes, modified or not by an O2- plasma treatment. ii) Identification of gene products associated with the improvement of ACT production.

Streptomyces coelicolor immobilizationO2-plasma treatmentnanofiber membraneactinorhodin productionSettore BIO/19 - Microbiologia Generaledifferential proteomic analysis.
researchProduct

The

2019

In actinomycetes, antibiotic production is often associated with a morpho-physiological differentiation program that is regulated by complex molecular and metabolic networks. Many aspects of these regulatory circuits have been already elucidated and many others still deserve further investigations. In this regard, the possible role of many small open reading frames (smORFs) in actinomycete morpho-physiological differentiation is still elusive. In Streptomyces coelicolor, inactivation of the smORF trpM (SCO2038) – whose product modulates L-tryptophan biosynthesis – impairs production of antibiotics and morphological differentiation. Indeed, it was demonstrated that TrpM is able to interact w…

small open reading framecalcium-dependent antibioticcytosol aminopeptidaseactinorhodin productionStreptomyces coelicolorprimary and secondary metabolismtrpMMicrobiologyOriginal ResearchFrontiers in microbiology
researchProduct

The small protein SCO2038 modulates tryptophan biosynthesis and morpho-physiological differentiation in Streptomyces coelicolor

2016

In Streptomyces coelicolor small open reading frames were identified in several amino acids biosynthetic gene clusters, like SCO2038 (trpX) in the tryptophan trpCXBA locus. Here, the role of SCO2038, encoding a 63 amino acid protein, was investigated by both phenotypic and molecular analyses. A SCO2038 knockout mutant strain showed a delayed growth on minimal medium (MM), compromised actinorhodin biosynthesis and poor sporulation. The capability of this mutant to grow on MM was restored by tryptophan’s and its precursors’ supplementation. Pulldown and bacterial two hybrid assays revealed SCO2038 interaction with PepA, which is putatively involved in the metabolism of serine, glycine and cys…

tryptophan gene clusteractinorhodin productionmorphophysiological differentiation
researchProduct